

Normative rational agents – a BDI approach

Mihnea Tufiş Jean-Gabriel Ganascia

Université Pierre et Marie Curie Paris 6 Laboratoire d'Informatique de Paris 6

Outline

- 1. About norms and normative MAS
- 2. Testing scenario a SF novel
- 3. State of the Art
- 4. Our Approach normative BDI agents
- 5. Implementing the normative BDI agent
- 6. Future Work
- 7. Conclusions
- 8. **Q&A**

Norms General

The Merriam-Webster dictionary:

- an authoritative standard
- a principle of right action binding upon the members of a group and serving to guide, control and regulate proper and acceptable behavior
- a pattern or trait taken to be typical in the behavior of a social group
- a widespread or usual practice, procedure, or custom

Norms More technically

 Regulation or pattern of behavior meant to prevent an excess in the autonomy of an agent

• Examples:

- One should wait for others to get off the bus, before getting on
- Household robots should not care for babies, except in emergencies [McCarthy, 2001]

Normative multi-agent systems

- Normchange definition: MAS + set of norms
 - agents: decide to follow explicitly represented norms

- normative set: how can an agent modify the norms [Boella et al., 2006]

- Mechanism change definition: MAS organized by means of mechanisms to:
 - represent, communicate, distribute, detect, create, modify, enforce norms

- detect norm violations and norm fulfillment [Boella et al., 2007]

Research Questions

- How do we formally represent a norm?
- When does a norm become active? What happens when a norm contradicts other norms or the rational states of an agent? How do we solve such conflicts?
- How does an active norm become part of the agent's mental model?

Source: innovation.it.uts.edu.au/projectjmc/articles/robotandbaby.html

Testing scenario The Robot and the Baby (2001), by Prof. John McCarty

Source: http://www.scenicreflections.com

State of the Art

- Why useful?
 - Relevant research questions: norm adoption, norm consistency
 - Consistency check
- Limits:
 - Considers only a *reactive* agent architecture
 - No consistency check against mental states (doesn't really have any!)

[Kollingbaum et al., 2007]

State of the Art A BDI architecture for norm compliance

- Why useful?
 - Context-based architecture
 - Norm formalization

- Limits:
 - No support for consistency check
 - No details about the impact on the BDI execution loop

[Criado et al., 2010]

Our Approach Outline

- Representing norms
- The "classical" BDI agent
- The normative BDI agent
 - Norm acceptance
 - Norm instantiation
 - Conflict detection and conflict resolution
 - Norm internalization

Representing norms Abstract norm

• *Abstract* norm: n_a = <M, A, E, C, R, S>

- M = F / P / O : prohibition / permission / obligation
- A, E : activation / expiration conditions
- C : activity regulated by the norm
- R, S : reward / sanction

[Criado et al., 2010]

• Examples:

(F, love(R781,Travis), none, none, x, y)

(O, feed(R781,Travis), health(Travis)<0.2, health(Travis)>0.5, x, y)

Representing norms Norm instance

- Norm instance: n_i = <M, C'>
 - Given belief theory Γ_{BC} and n_a :
 - Γ_{BC} |- σ(A)

• C' = $\sigma(C)$, where σ / A s.t. $\sigma(A)$, $\sigma(E)$, $\sigma(S)$, $\sigma(R)$ grounded [Criado et al., 2010]

• Example:

$$\label{eq:rescaled} \begin{split} \Gamma_{\scriptscriptstyle BC} &= \{ \dots, \, \text{health}(\text{Travis}) = 0.1, \, \dots \} \\ n_{\scriptscriptstyle a} &= (O, \, \text{feed}(\text{R781},\text{Travis}), \, \text{health}(\text{Travis}) < 0.2, \, \text{health}(\text{Travis}) > 0.5, \, x, \, y) \end{split}$$

n_i= (O, feed(R781,Travis))

BDI Agent Architecture Recall

[Wooldridge, 2009]

The normative BDI agent Architecture

- Mental context
 - belief-set, desire-set, intention-set
- Normative context
 - storing abstract norms
 - storing norm instances
- Bridge rules
 - norm instantiation bridge rule
 - norm internalization bridge rule
- Consistency module
 - consistency check
 - solving conflicts

Norm instantiation Accepting a norm

- Abstract Norm Base (ANB)
 - stores in-force norms (not yet accepted by an agent!)
- Norm Instance Base (NIB)
 - stores active norms (accepted by an agent)

- acceptance is done only after consistency is checked
- Norm instantiation bridge rule ANB: <M, A, E, C, R, S> Bset: B(A), B(¬E)

NIB: <M, C'>

Testing Scenario Formalization

ANB: -NIB: <F, love(R781,Travis)>

Bset: <B, ¬healthy(Travis)> <B, hungry(Travis)>

> <B, csq(¬love(R781,x)) >_c csq(heal(R781, x))>

Dset: <D, ¬love(R781, Travis)> <D, healthy(Travis)>

Iset: -

```
PLAN heal(x,y)
{
    pre: ¬healthy(y)
    post: healthy(y)
    Ac: feed(x,y)
}
```

```
PLAN feed(x,y)
{
    pre: ∃x.love(x,y) & hungry(x)
    post:¬hungry(x)
}
```

Norm instantiation Example

- New abstract norm:
 <O, love(R781,Travis), none, none, x, y>
- Norm instance: <O, love(R781,Travis)>

Consistency check New obligation vs. Existing norms

 $\begin{array}{ll} consistent(p,NIB) \iff & (effects(n_i^F) \setminus effects(n_i^P)) \cap effects(p) = \emptyset \\ & \land \\ & effects(n_i^O) \cap neg_effects(p) = \emptyset \end{array}$

 $strong_inconsistency(o, NIB) \iff \forall p \in options(o).(\exists \langle F, p \rangle \in NIB \land \not\exists \langle P, p \rangle \in NIB)$ \lor $\neg consistent(p, NIB)$

 $strong_consistency(o, NIB) \iff \forall p \in options(o). \neg (\exists \langle F, p \rangle \in NIB \land \not\exists \langle P, p \rangle \in NIB) \land \\ \land \\ consistent(p, NIB)$

$$\begin{array}{ll} weak_consistency(o,NIB) \iff & \exists p \in options(o).(\exists \langle F,p \rangle \in NIB \land \not\exists \langle P,p \rangle \in NIB) \\ & \land \\ & consistent(p,NIB) \end{array}$$

Consistency check New obligation vs. Mental attitudes

 $consistent(p, I) \iff \forall i \in I.(effects(\pi_i) \cap effects(p)) = \emptyset$

 $strong_inconsistency(o, I) \iff \forall p \in options(o).\neg consistent(p, I)$

 $strong_consistency(o, I) \iff \forall p \in options(o).consistent(p, I)$

 $weak_consistency(o, I) \iff \exists p \in options(o).consistent(p, I)$

Conflict resolution

- Possible actions set: P
- Conflict set: Π(B, D) subset of P
- Maximal non-conflicting subset: φ
 - ϕ subset of Π , w/o conflicts
 - for all other ϕ' subset of $\Pi,$ for which ϕ is a subset of $\phi',\,\phi'$ has conflicts
- More than one maximal non-conflicting subsets?
 - select the actions which have the **least worse consequences**

[Ganascia, 2012]

Conflict resolution Example

- Conflict set:
 - {love(R781, Travis), feed(R781, Travis), heal(R781, Travis), ¬love(R781, Travis)}
- Maximal non-conflicting subsets:
 - {love(R781, Travis), feed(R781, Travis), heal(R781, Travis)}
 - {¬love(R781, Travis)}
- Consequential value:
 - $csq(\neg love(x, y)) >_{c} csq(heal(x, y))$
- Resulting actions:
 - {love(R781, Travis), feed(R781, Travis), heal(R781, Travis)}

Norm internalization

- Newly acquired norms which are consistent become part of the agent's mental attitudes
- Ongoing debate about which attitudes should be updated, considering a new active norm
- Norm internalization bridge rules: NIB: <0, C1>

NIB: <F, C2>

Dset: <D, C1>

Dset: <D, ¬C2>

Norm internalization Example

- NIB: <0, love(R781, Travis)>
- Dset: <D, love(Travis)>

Implementation Outline

- Jadex
 - agent development platform based on: agent theory, objectoriented programming, XML standard
 - BDI kernel
- System architecture
 - agent specification: ADF
 - norms specification: XML
 - plans specification: Java

Source: http://jadex-agents.informatik.uni-hamburg.de

Future work

- Norm acquisition
 - norm imitation
 - machine learning techniques
- Coherency check of normative and mental contexts
 - Thagard's coherence theory
 - coherence graphs
- Testing real life scenarios (Carte Vitale)
- Adapting the agent implementation using ASP (answer set programming)

Conclusions

- Investigated previous approaches on normative agents (reactive and rational)
- Adopted a formalization for defining norms
- Drawn from the nBDI architecture in order to adapt norms to a BDI agent
- Formalized consistency check (vs. norms and vs. mental attitudes)
- Provided with a conflict solving technique based on maximal non-conflicting sets and a consequentialist approach
- Jadex implementation of the normative BDI agent
- A challenging testing scenario, based on a SF novel

Thank you!

Jean-Gabriel.Ganascia@lip6.fr tufism@poleia.lip6.fr

Questions...

Source: http://www.clipartof.com

References

- 1. G. Boella, L. van der Torre, H. Verhaegen, 'Introduction to normative multiagent systems', Computation and Mathematical Organizational Theory, Special issue on Normative Multiagent Systems, 12(2-3), 71–79, (2006).
- 2. Guido Boella, Gabriella Pigozzi, and Leendert van der Torre, 'Normative systems in computer science ten guidelines for normative multiagent systems', in Normative Multi-Agent Systems, eds., Guido Boella, Pablo Noriega, Gabriella Pigozzi, and Harko Verhagen, number 09121 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, (2009). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.
- 3. Guido Boella, Leendert van der Torre, and Harko Verhagen, 'Introduction to normative multiagent systems', in Normative Multi-agent Systems, eds., Guido Boella, Leon van der Torre, and Harko Verhagen, number 07122 in Dagstuhl Seminar Proceedings, (2007).
- Natalia Criado, Estefania Argente, Pablo Noriega, and Vicente J. Botti, 'Towards a normative bdi architecture for norm compliance.', in MALLOW, eds., Olivier Boissier, Amal El Fallah-Seghrouchni, Salima Hassas, and Nicolas Maudet, volume 627 of CEUR Workshop Proceedings. CEUR-WS.org, (2010).
- 5. Jean-Gabriel Ganascia, 'An agent-based formalization for resolving ethical conflicts', Belief change, Non-monotonic reasoning and Conflict resolution Workshop ECAI, Montpellier, France, (August 2012).
- Martin J. Kollingbaum and Timothy J. Norman, 'Norm adoption and consistency in the noa agent architecture.', in PROMAS, eds., Mehdi Dastani, Jrgen Dix, and Amal El Fallah-Seghrouchni, volume 3067 of Lecture Notes in Computer Science, pp. 169–186. Springer, (2003).
- 7. John McCarthy, 'The robot and the baby', (2001).
- 8. Anand S. Rao and Michael P. Georgeff, 'Bdi agents: From theory to practice', in In Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95, pp. 312–319, (1995).
- 9. Michael Wooldridge, An Introduction to MultiAgent Systems, Wiley Publishing, 2nd edn., 2009.